
Gamma Programming Language
Specification

Daniel Campos do Nascimento © 2020

GitHub Page

Licensed under Creative Commons License - CC BY-SA 4.0.

https://setun-90.github.io

II

Contents

1 Syntax 2

1.1 Language 3

1.1.1 Alphabet 3

1.1.2 Tokens 3

1.2 Translation Units 4

1.2.1 Header Units 4

1.2.1.1 Namespaces 4

1.2.1.2 Types 4

1.2.1.3 Declarations 4

1.2.2 Source Units 4

1.2.2.1 Data 4

1.2.2.2 Subprograms 4

1.2.2.2.1 Statements 5

1.2.2.2.2 Dynamic Definitions 6

2 Semantics 8

2.1 Types 9

2.1.1 Properties 9

2.1.1.1 Qualification 9

2.1.1.2 Size 9

2.1.1.3 Alignment 9

2.1.2 Varieties 9

2.1.2.1 Basic 9

2.1.2.1.1 Enumerated Type 9

2.1.2.1.2 Aggregate Type 9

2.1.2.2 Derived 10

2.1.2.2.1 Pointer 10

2.1.2.2.2 Array 10

2.1.2.2.3 Signature 11

2.1.3 Provided 11

2.1.3.1 Fixed-Point Types 11

III

2.1.3.2 Floating-Point Types 12

2.1.3.3 Boolean Type 12

2.2 Data 14

2.2.1 Identifier 14

2.2.2 Symbols 14

2.2.2.1 Global 14

2.2.2.2 Unit 14

2.2.2.3 Subprogram 14

2.2.2.4 Block 14

2.3 Code 15

2.3.1 Labels 15

2.3.2 Statements 15

2.3.2.1 Simple Statements 15

2.3.2.1.1 Assignment 15

2.3.2.2 Primitive Statements 15

2.3.2.2.1 JUMP Statement 15

2.3.2.2.2 EXIT Statement 15

2.3.2.2.3 RETURN Statement 15

2.3.2.3 Composite Statements 15

2.3.2.3.1 Conditional Statements 15

2.3.2.3.2 FOR Statements 16

2.3.2.3.3 DO Statements 16

2.3.3 Definitions 16

2.3.4 References 16

3 Execution 17

3.1 States 18

3.1.1 Allocation 18

3.1.1.1 Static 18

3.1.1.2 Automatic 18

3.1.1.3 Dynamic 18

3.1.1.4 Temporary 18

3.1.2 Initial 18

3.1.2.1 Programs 18

IV

3.1.2.2 Libraries 19

3.2 Instructions 20

3.2.1 Dynamic Definitions 20

3.2.1.1 Declarations 20

3.2.1.2 Definitions 20

3.2.2 Statements 20

3.2.2.1 Simple 20

3.2.2.1.1 Assignments 20

3.2.2.1.2 Procedure calls 20

3.2.2.2 Primitive 21

3.2.2.2.1 JUMP Statement 21

3.2.2.2.2 EXIT Statement 21

3.2.2.2.3 RETURN Statement 21

3.2.2.3 Composite 21

3.2.2.3.1 Conditional Statements 21

3.2.2.3.2 Iterative Statements 21

3.3 Expressions 23

3.3.1 Constant 23

3.3.1.1 Integer 23

3.3.1.2 Floating point 23

3.3.1.3 Array 23

3.3.2 References 23

3.3.2.1 Read 23

3.3.2.2 Write 23

3.3.2.3 Call 23

3.3.3 Function calls 23

3.3.4 Operations 24

3.3.4.1 Derived Types 24

3.3.4.1.1 Pointer Types 24

3.3.4.1.2 Array Types 24

3.3.4.1.3 Signature Types 24

3.3.4.2 Basic Types 24

3.3.4.2.1 Aggregate Types 24

V

3.3.4.3 Fixed-Point Types 25

3.3.4.3.1 Unary Plus 25

3.3.4.3.2 Unary Minus 25

3.3.4.3.3 Unary Bitwise Complement 25

3.3.4.3.4 Integer Division 25

3.3.4.3.5 Remainder 25

3.3.4.3.6 Multiplication 25

3.3.4.3.7 Bit Shift 25

3.3.4.3.8 Bit Rotate 26

3.3.4.3.9 Addition 26

3.3.4.3.10 Subtraction 26

3.3.4.3.11 Bitwise Exclusive-Or 26

3.3.4.3.12 Bitwise And 26

3.3.4.3.13 Bitwise Or 26

3.3.4.3.14 Bitwise Nor 26

3.3.4.4 Floating-Point Types 26

3.3.4.4.1 Division 27

3.3.4.4.2 Multiplication 27

3.3.4.4.3 Addition 27

3.3.4.4.4 Subtraction 27

3.3.4.5 Boolean Type 27

3.3.4.5.1 Equality 27

3.3.4.5.2 Inequality 28

3.3.4.5.3 Less Than 28

3.3.4.5.4 Greater Than 28

3.3.4.5.5 Less Than or Equal 28

3.3.4.5.6 Greater Than or Equal 28

3.3.4.5.7 Logical Not 28

3.3.4.5.8 Logical Exclusive-Or 29

3.3.4.5.9 Logical And 29

3.3.4.5.10 Logical Or 29

3.3.4.5.11 Logical Nor 29

3.3.4.6 Ternary Operator 29

VI

A Grammar XXX

1

Introduction

The Gamma programming language is a source language in which to write source code. A translator trans-
lates source code into object code written in an object language.

This document describes the process of translating Gamma source code and the behavior of object code, to
facilitate comparison of translations thereof.

Interpretation
This document has a prescriptive intent: a translator behaves so that all statements in this document hold.

Conventions
The following symbols and patterns shall be interpreted as follows:

• a represents an occurrence in Gamma source code of the string "a", or the regular expression matching the
string "a";

• 𝑎 represents the regular expression explicitly named "a";
• 𝑅|𝑆 represents the union of the regular expressions named "R" and "S";
• 𝑅 − 𝑆 represents the difference between the regular expressions named "R" and "S";
• 𝑅? = |𝑅 represents the optional application of the regular expression named "R";
• 𝑅+ represents the repetition of the regular expression named "R" one or more times;
• 𝑅∗ = |𝑅+ represents the repetition of the regular expression named "R" zero or more times;
• 𝑅− represents the complement of the regular expression named "R";
• a represents an occurrence in Gamma source code of a token in the class named "a";
• {a} represents one or more occurrences of the string "a";
• [a] represents the optional occurrence of the string "a";
• a|b represents the occurrence of either one of the strings "a" or "b".

2

1 Syntax
The Gamma programming language is a LR(1) language of translation units, which are sequences of tokens.
Tokens, in turn, are strings in a regular language over an alphabet.

Translators accept only well-formed source code. Source code is well-formed only if the statements not quali-
fying it as otherwise in this document hold.

3

1.1 Language

1.1.1 Alphabet
The alphabet of the Gamma programming language is in the Unicode 10 character set. Several subsets are
named here for future reference in this document:

• Letters, consisting of the Unicode General Categories Li, Lu, Lt, Lm and Lo, named 𝑙𝑒𝑡𝑡𝑒𝑟;
• Digits, consisting of the following subsets:

– the decimal digits 0123456789, named 𝑑𝑖𝑔𝑖𝑡,
and the nonzero digits 𝑛𝑑𝑖𝑔𝑖𝑡 = 𝑑𝑖𝑔𝑖𝑡 − 0;

– the binary digits 01, named 𝑏𝑑𝑖𝑔𝑖𝑡;
– the octal digits 01234567, named 𝑜𝑑𝑖𝑔𝑖𝑡;
– the hexadecimal digits 0123456789ABCDEF, named ℎ𝑑𝑖𝑔𝑖𝑡;

• Alphanumerics, named 𝑎𝑙𝑝ℎ𝑎 = 𝑑𝑖𝑔𝑖𝑡|𝑙𝑒𝑡𝑡𝑒𝑟;
• Punctuation and delimiters, consisting of ()[]{}'":;,;
• Symbols, consisting of @.\/%^*+-#&|~=<>!?:;
• Whitespace, consisting of the Unicode General Categories Zs, Zl, Zp and Cc; and
• The underscore _.

1.1.2 Tokens
The tokens of the Gamma programming language consist of the union of the following sets of strings:

• The keywords space type sym with data code if elif case is else for while do until jump exit
return end;

• The operators #:: %:: . @ / % ^^ ** * + - # & | ~ == =< >= < > >< ## && || ! ?:;
• The delimiters () [] {};
• Names, defined by the regular expression 𝑛𝑎𝑚𝑒

(_|𝑙𝑒𝑡𝑡𝑒𝑟)(_|𝑎𝑙𝑝ℎ𝑎)∗

• Identifiers, defined by the regular expression 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟
𝑛𝑎𝑚𝑒(\𝑛𝑎𝑚𝑒)∗

• Numbers, defined by the regular expressions 𝑛𝑢𝑚𝑏𝑒𝑟
𝑛𝑑𝑖𝑔𝑖𝑡(𝑑𝑖𝑔𝑖𝑡+(.𝑑𝑖𝑔𝑖𝑡+)?|(.𝑑𝑖𝑔𝑖𝑡+)?(e-?𝑛𝑑𝑖𝑔𝑖𝑡 𝑑𝑖𝑔𝑖𝑡∗)?)
0(b 𝑏𝑑𝑖𝑔𝑖𝑡+|o 𝑜𝑑𝑖𝑔𝑖𝑡+|xℎ𝑑𝑖𝑔𝑖𝑡+)

• Strings, defined by the regular expression 𝑠𝑡𝑟𝑖𝑛𝑔
"("−|\("|\))∗"

• Labels, defined by the regular expression 𝑙𝑎𝑏𝑒𝑙
𝑛𝑎𝑚𝑒:
where 𝑛𝑎𝑚𝑒 is the label’s value

• Comments, defined by the regular expressions
(\)−*\
\\(\\|𝑛𝑒𝑤𝑙𝑖𝑛𝑒)−𝑛𝑒𝑤𝑙𝑖𝑛𝑒

4

1.2 Translation Units

Translation units are either header units or source units.

For symbols not defined in this section, see § A.

1.2.1 Header Units
A header unit is a translation unit which contains type definitions or declarations.

1.2.1.1 Namespaces
A namespace introduces a name used to create identifiers.

A namespace is defined with the following syntax:
space name {declaration} end

1.2.1.2 Types
A type is the association of a set of values with operations over these values and other types.

Types are defined with the following syntax:
type symbol[{, symbol}]

1.2.1.3 Declarations
A declaration describes a symbol. A symbol is the association of an name with a type.

Symbols are declared with the following syntax:
sym symbol[{, symbol}]

1.2.2 Source Units
A source unit is a translation unit which contains type names or definitions. Definitions describe either
datums or subprograms at the beginning of execution (see § 3).

1.2.2.1 Data
A datum is the association of a symbol with an initial value of the symbol’s type.

Datums are defined with the following syntax:
data datum[{, datum}]

1.2.2.2 Subprograms
A subprogram is the association of a symbol with a sequence of instructions.

A subprogram is defined with the following syntax:

5

code symbol
instructions

end

A subprogram has a body containing one or more instructions. An instruction is either a statement or a
definition.

1.2.2.2.1 Statements

A statement is either a simple statement, a primitive statement, or a composite statement. Any statement
may be labeled.

Simple Statements

A simple statement changes the values of the module’s data. A simple statement has the following form:
expression_term [(assignment|= [{expression_term =}])expression]
where assignment may be any one of the following compound assignments:

• /=, %=;
• ^^=, **=;
• *=;
• +=, -=;
• #=;
• &=;
• |=, ~=;
• ##=;
• &&=; and
• ||=, !=.

Primitive Statements

A primitive statement is either a JUMP statement, an EXIT statement, or a RETURN statement.

A JUMP statement passes control to the containing iterative statement or the statement labeled by the argu-
ment. A JUMP statement has the following form:
jump ([name])
where name is its argument.

An EXIT statement passes control to the statement following the containing iterative statement or a containing
iterative statement labeled by the argument. An EXIT statement has the following form:
exit ([name])
where name is its argument.

A RETURN statement passes control to the subprogram that called the subprogram containing it, at the point
at which the containing subprogram was called. A RETURN statement has the following form:
return ([expression])
where expression is its argument.

Composite Statements

Composite statements contain other instructions in one or more blocks. A composite statement is either a
conditional statement or an iterative statement.

6

A conditional statement evaluates guards and uses the values to execute one block or branch out of several.
A conditional statement is either an IF statement or a CASE statement.

IF statements have the following form:

if expression do
instructions

[{elif expression do
instructions}]

[else
instructions]

end

where expression is a guard and instructions is a branch.

CASE statements have the following form:

case expression
{{is expression} do

instructions}
[else

instructions]
end

where expression is a guard and instructions is a branch.

An iterative statement executes a block as long as its condition is true. An iterative statement is either a
WHILE statement, a DO statement, or a FOR statement.

WHILE statements have the following form:
while expression do instructions end
where expression is the condition and instructions is the block.

DO statements have the following form:
do instructions until expression end
where expression is the condition and instructions is the block.

FOR statements have the following form:
for [datum[{,datum}]];expression;simple_statement do instructions end
where:

• [datum[{, datum}]] are the initializations;
• expression is the condition;
• simple_statement is the update; and
• instructions is the block.

1.2.2.2.2 Dynamic Definitions

A dynamic definition inside a subprogram body defines data or names or declares either data or subprograms
with scope (see § ??) and lifetime (see § 3.1.1) limited to that of the containing block.

Symbols are declared with the following syntax:
sym symbol[{, symbol}]

Datums are defined with the following syntax:
data datum[{, datum}]

7

Subprograms are defined with the following syntax:

code symbol
instructions

end

Names are defined with the following syntax:
with rename[{, rename}]

8

2 Semantics
A finite, non-empty group of translation units describes a module. Translators accept only well-defined mod-
ules. A module is well-defined only if the statements not qualifying it as otherwise in this document hold.

A module is an independent association of data and code stored in memory. A module’s memory is modeled
as a succession of cells, each of which is a string of bits. All cells have the same finite, fixed, translator-defined
size. Each cell is assigned a unique natural integer called an address. If two addresses succeed each other,
the cells they are assigned to are consecutive.

9

2.1 Types

A type, for the purposes of this specification, is an association of a set of values and operations over them.
Values of types are represented as bit strings, and these bit strings are then stored in consecutive cells
collectively called an allocation.

2.1.1 Properties
All types may be named or qualified. If T is a name for a type S and S is a name for a type U, then T is a name
for U. If T is a qualified type and S is a type derived from T, then S is a qualified type.

A type is complete if all of its values can be assigned a size. All complete types have an alignment.

2.1.1.1 Qualification
A type may be qualified as either constant or result.

2.1.1.2 Size
The size of a type is the number of cells in allocations for its values. The size of a type type is written #::type.

2.1.1.3 Alignment
The alignment of a type is the greatest common divisor of the distances between allocations for its values. The
alignment of a type type is written %::type.

2.1.2 Varieties
Types are either basic or derived.

2.1.2.1 Basic
A basic type is either an enumerated type or an aggregate type.

2.1.2.1.1 Enumerated Type

An enumerated type is a type whose values are enumerated, i.e. listed explicitly. An enumerated type is
described with the following syntax:

{ name{, name} }

Every enumerated type is complete; except where stated elsewhere, the size and alignment are translator-
defined.

2.1.2.1.2 Aggregate Type

An aggregate type is a type whose values are associations of members. An aggregate type is either a record
type or a union type.

10

A record type is a type whose values are in the product of the types of its members. A record type is described
with the following syntax:
{ symbol{, symbol} }
Every record type is complete: the size is the sum of the sizes of its members’ types, and the alignment is
the least common multiple of the alignments of its members’ types. The members of a record type value have
separate allocations, and allocations are in the order of appearance in the source code.

A union type is a type whose values are in the union of the types of its members. A union type is described
with the following syntax:
{ symbol{; symbol} }
Every union type is complete: the size is the maximum of the sizes of its members’ types, and the alignment is
the least common multiple of the alignments of its members’ types. The members of a union type value share
a single allocation.

Operations accepting aggregate type values are:

• .: type(aggregate_type, member_type), member access;
• @: type(@aggregate_type, member_type), member of pointed-to value access.

2.1.2.2 Derived
A derived type is either a pointer type, an array type or a signature type.

2.1.2.2.1 Pointer

A pointer type’s values store the addresses of values of that type. A pointer type is described with the following
syntaxes:
For a pointer to a basic or pointer type type,
@type

For a pointer to an array type type[],
(@type)[]

For a pointer to a signature type [return_type]([symbol[{,symbol}]]),
(@[return_type])([symbol[{, symbol}]])

Every pointer type is complete: the size and alignment are translator-defined. Nevertheless, pointer types have
the special property that their alignment is the largest of all enumerated types.

The only operation accepting pointer type values, for every complete type type, is @: type(@type), the pointer
dereference.

The only operation yielding pointer type values, for every type type, is .: @type(type), the localization.

2.1.2.2.2 Array

An array type’s values associate finite numbers of values of a single type with an index. Array types may be
either static or dynamic.

A static array type is described with the following syntax:
type[expression]

A dynamic array type is described with the following syntax:
type[]

11

Static array types are complete; dynamic array types are not.

Operations accepting and/or yielding array type values are:

• #: nsize(type[]), size;
• +: @type(type[], nsize), offset;
• []: type(type[], nsize), element access.

(see § 2.1.3.1)

2.1.2.2.3 Signature

A signature type’s values describe a subprogram. A signature type is described with the following syntax:
[type]([symbol[{, symbol}]])

Every signature type is complete: the size and alignment are translator-defined.

The only operation accepting signature type values is (), the subprogram call.

2.1.3 Provided
Translators name fixed-point and floating-point number types.

2.1.3.1 Fixed-Point Types
The following fixed-point types are defined by this specification in every module:

• the natural integer type n1, containing [0; 28 − 1];
• the relative integer type z1, containing [1 − 27; 27 − 1]; and
• byte, a translator-defined name for either n1 or z1.

In particular, n1 and z1 are assigned a size and alignment of 1, so their values are exactly the values that each
cell of memory can hold.

Translators may define the following additional fixed-point types:

• the natural integer types:
– n2, containing [0; 216 − 1];
– n4, containing [0; 232 − 1];
– n8, containing [0; 264 − 1];
– n16, containing [0; 2128 − 1];
– n32, containing [0; 2256 − 1];
– nmax, a name for the largest natural integer type defined by the translator; and
– nsize, a name for the natural integer type able to represent the largest address available.

• the relative integer types:
– z2, containing [1 − 215; 215 − 1];
– z4, containing [1 − 231; 231 − 1];
– z8, containing [1 − 263; 263 − 1];
– z16, containing [1 − 2127; 2127 − 1];
– z32, containing [1 − 2255; 2255 − 1];
– zmax, a name for the largest relative integer type defined by the translator; and
– zsize, a name for the relative integer type able to represent half the largest address available.

12

Their sizes are in a geometric progression of common ratio 2; their other properties are translator-defined.

The following operations accept and yield fixed-point type values, ordered by decreasing precedence:

1. – +: type(type), unary plus;
– -: type(type), unary minus;
– ~: type(type), unary bitwise complement;

2. – /: type(type,type), integer division;
– %: type(type,type), remainder;

3. – **: type(type,type), bit shift;
– ^^: type(type,type), bit rotate;

4. *: type(type,type), multiplication;
5. – +: type(type,type), addition;

– -: type(type,type), subtraction;
6. #: type(type,type), bitwise exclusive-or;
7. &: type(type,type), bitwise and;
8. – |: type(type,type), bitwise or; and

– ~: type(type,type), bitwise nor;

where type is any of the above fixed-point types.

2.1.3.2 Floating-Point Types
The floating-point types d2 and d4 are named in every module. Translators may name the additional floating-
point types d1, d8, d16, d32 and dmax. In particular, d1, if defined, is assigned a size and alignment of 1.

The floating-point types’ sizes are in a geometric progression of common ratio 2; their values and other proper-
ties are translator-defined.

The following operations accept and yield floating-point type values, ordered by decreasing precedence:

1. – +: type(type), unary plus;
– -: type(type), unary minus;

2. /: type(type,type), division;
3. *: type(type,type), multiplication;
4. – +: type(type,type), addition; and

– -: type(type,type), subtraction;

where type is any of the above floating-point types.

2.1.3.3 Boolean Type
The boolean type bool: {true, false} is named in every Gamma module.

The following operations accept and/or yield boolean type values, ordered by decreasing precedence:

1. – ==: bool(typede,typede), equality;
– ><: bool(typede,typede), inequality;
– <: bool(typepe,typepe), less than;
– >: bool(typepe,typepe), greater than;
– =<: bool(typepe,typepe), less than or equal;
– >=: bool(typepe,typepe), greater than or equal;

2. !: bool(bool), logical not;

13

3. ##: bool(bool,bool), logical exclusive-or;
4. &&: bool(bool,bool), logical and;
5. – ||: bool(bool,bool), logical or; and

– !: bool(bool,bool), logical nor;

where:

• typede is any enumerated or derived type; and
• typepe is any enumerated or pointer type.

An operation accepting boolean type values is ?: : type(bool,type,type), the ternary operator.

14

2.2 Data

A module’s data is accessed via identifiers, symbols, datums and references.

2.2.1 Identifier
An identifier is a sequence of names.

2.2.2 Symbols
A symbol is the association of an identifier and a type. Symbols which have the same identifier are called
candidates, and are said to be overloaded.

A symbol’s scope is the subset of locations in the source code in which it may be referred to. A symbol has
global, unit, subprogram, or block scope. If a symbol is declared twice in the same scope, the module in
question is ill-defined.

2.2.2.1 Global
A symbol has global scope if it is declared in a header unit.

2.2.2.2 Unit
A symbol has unit scope if it has global scope or is declared outside of a subprogram.

2.2.2.3 Subprogram
A symbol has subprogram scope if it has unit scope or is a subprogram parameter.

2.2.2.4 Block
A symbol has block scope if it has subprogram scope or is declared in a block.

15

2.3 Code

A module’s code describes changes in the module’s data in a well-defined order.

All code in a module is contained in subprograms.

A subprogram is either a procedure or a function; procedures do not have a return type, whereas functions do.

2.3.1 Labels
Labels, like symbols, have scope. In particular, labels always have block scope.

2.3.2 Statements

2.3.2.1 Simple Statements

2.3.2.1.1 Assignment

In an assignment, the targets are writable, the source is readable, and the source’s type matches the target’s
type.

2.3.2.2 Primitive Statements

2.3.2.2.1 JUMP Statement

If a JUMP statement has no argument, it is in the block of an iterative statement, otherwise its argument is the
name of a label in its scope.

2.3.2.2.2 EXIT Statement

If an EXIT statement has no argument, it is in the block of an iterative statement, otherwise its argument is the
name of the label of an iterative statement containing it.

2.3.2.2.3 RETURN Statement

If a RETURN statement is in a procedure, then it has no argument, otherwise its argument is an expression
whose type matches the return type of the function containing it.

2.3.2.3 Composite Statements
Composite statements introduce a scope.

2.3.2.3.1 Conditional Statements

A conditional statement evaluates expressions and uses the values to select bodies or branches to which to
pass control.

16

IF statements execute branches guarded by expressions which equal true when the conditional executes.
Each branch’s guard is the expression which immediately precedes it syntactically.

CASE statements execute a branch guarded by a constant value which equals the expression passed as the
statement’s argument when it executes. Each branch’s guard expression is the union of all of the constant
values preceding it without an intervening instruction. No two guard expressions evaluate to the same value.

2.3.2.3.2 FOR Statements

In a FOR statement, the datums defined in the initializations are scoped to, and the expression and simple
statement are performed in, the scope of its block.

2.3.2.3.3 DO Statements

In a DO statement, the control expression is evaluated in the scope of its block.

2.3.3 Definitions
A definition inside a subprogram body defines either data or a subprogram with a scope limited to that of the
containing block and allocated with automatic lifetime.

2.3.4 References
A reference is the association of an occurrence of an identifier with a symbol. The symbol’s type matches the
type inferred where the identifier occurs. The first reference to any symbol in its own scope is a write.

The process by which the reference is created is called linkage, and proceeds as follows:

1. If a WITH statement in the identifier’s scope defines its first name, then said first name is replaced by its
definition.

2. The identifier and required type are associated to create a dummy symbol.
3. If a symbol of block scope matches the candidate, the reference is created.

Otherwise, if a symbol of global scope matches the candidate, the reference is recorded as undefined.
Otherwise, the module is ill-defined.

17

3 Execution
Execution is the span of time during which the actions described by the module’s code are performed on its
data.

The actions actually performed during execution are called its behavior. The modifications of datums of global
scope are called its observable behavior.

Behavior is either:

• defined, if it is described in this document;
• translator-defined, if it is described in a document associated with the translator;
• unspecified, if it is explicitly described as such or not predicted in this document; or
• undefined, if it is explicitly described as such or not described in this document.

18

3.1 States

During execution, a module’s state consists of:

• the entities which are allocated, with their values; and
• the instruction being executed in that state.

3.1.1 Allocation
An allocation is an assignment of consecutive addresses in memory to a value. An allocation is designated by
the lowest address reserved.

An allocation’s lifetime is the portion of execution in which it may be referred to. An allocation has either static,
automatic, dynamic or temporary lifetime.

3.1.1.1 Static
An allocation’s lifetime is static if it is equivalent to the execution time of the module in which it is initialized.

3.1.1.2 Automatic
An allocation’s lifetime is automatic if it is equivalent to the execution time of the block in which it is initialized.

3.1.1.3 Dynamic
An allocation’s lifetime is dynamic if it does not exceed the lifetime of a pointer pointing to it.

3.1.1.4 Temporary
An allocation’s lifetime is temporary if it is created to hold the result of an expression (see § 3.3).

3.1.2 Initial
The initial state of a module occurs before all of its other states. Before the initial state:

1. all undefined references are created by creating datums for them (see § 2.3.4);
2. all datums with unit scope are allocated statically.

The first state of the module determines whether it will behave as a program or as a library.

3.1.2.1 Programs
A module behaves as a program if it has only one global symbol of signature type. The first state is then
specified by:

• the initial values of datums with global scope; and
• the implicit call to the subprogram bound to the aforementioned symbol.

19

3.1.2.2 Libraries
A module behaves as a library if it has more than one global symbol of signature type.

20

3.2 Instructions

When an instruction is executed, its behavior is performed.

3.2.1 Dynamic Definitions

3.2.1.1 Declarations
When a declaration is executed, the datums are created and allocated with automatic lifetime in order of occur-
rence. For each symbol, the first reference following the declaration is a write which gives the datum’s initial
value.

If a conditional contains the first writes to a symbol, it does so in all of its branches; otherwise, if the symbol is
referred to after the conditional in question, the behavior is undefined.

3.2.1.2 Definitions
When a definition is executed, the datums are created and allocated with automatic lifetime in order of occur-
rence.

3.2.2 Statements

3.2.2.1 Simple

3.2.2.1.1 Assignments

When an assignment is executed:

1. The right-hand and left-hand sides are evaluated.
2. If the assignment is compound, then the value of the datum referred to by the left-hand side is combined with

the value of the right-hand side via the compound assignment’s operation into a temporary that becomes
the right-hand side.

3. The value of the allocation referred to by the left-hand side is set to the value of the allocation referred to by
the right-hand side.

4. The instruction occurring after the assignment in question is executed.

3.2.2.1.2 Procedure calls

Procedures are called as follows:

1. The arguments are evaluated.
2. The procedure referred to is determined.
3. The procedure’s parameters are bound to the values of the arguments.

21

4. The first instruction in the procedure’s body is executed.
5. The instruction occurring after the procedure call in question is executed.

3.2.2.2 Primitive

3.2.2.2.1 JUMP Statement

When a JUMP statement is executed, the behavior depends on the label specified.

• If the label is the empty string, then the containing iterative statement is re-executed.
• Otherwise, the statement with the label inside the containing subprogram is executed.

3.2.2.2.2 EXIT Statement

When an EXIT statement is executed, the behavior depends on the label specified.

• If the label is the empty string, then the statement following the containing iterative statement is executed.
• Otherwise, the statement following the containing iterative statement with the label is executed.

3.2.2.2.3 RETURN Statement

When a RETURN statement is executed, the body of the containing subprogram ends execution.

If the RETURN statement’s argument evaluates to the address of a datum or subprogram of subprogram scope,
the behavior is undefined.

3.2.2.3 Composite
When a composite statement is executed, it introduces a new scope.

3.2.2.3.1 Conditional Statements

When an IF statement is executed:

1. If the first guard is true, the branch associated with it is executed.
2. Step 1 is re-performed, with the next guard substituting the first guard.

When a CASE statement is executed:

1. The argument is evaluated.
2. The branch associated with the value to which the argument is equal is executed.

3.2.2.3.2 Iterative Statements

When a WHILE statement is executed:

1. If the guard is false, the statement following the WHILE statement in question is executed.
2. The block is executed.
3. Step 1 is re-performed.

When a DO statement is executed:

22

1. The block is executed.
2. If the guard is true, the statement following the DO statement in question is executed.
3. Step 1 is re-performed.

When a FOR statement is executed:

1. The initializations are executed.
2. If the guard is false, the statement following the FOR statement in question is executed.
3. The block is executed.
4. The update is executed.
5. Step 2 is re-performed.

23

3.3 Expressions

When an expression is evaluated, the expression’s result is stored in a temporary allocation (see § 3.1.1), and
the allocations of its arguments are deallocated.

3.3.1 Constant
A constant is bound to a temporary allocation.

3.3.1.1 Integer
The type of an integer constant is a translator-defined signed type.

3.3.1.2 Floating point
The type of a floating point constant is a translator-defined type.

3.3.1.3 Array
The type of an array constant is the type of its first element.

3.3.2 References
When a reference is evaluated, the expression’s allocation is the allocation of the datum that the reference
refers to. The usage of the allocation referred to determines whether the reference is a read, write, or a call.

3.3.2.1 Read
A reference is a read when the value of the expression is set to the value at the allocation referred to.

3.3.2.2 Write
A reference is a write when the value at the allocation referred to is set to the value of the right-hand-side of an
assignment.

3.3.2.3 Call
A reference is a call when the address of the allocation referred to determines the subprogram to call.

3.3.3 Function calls
When a function call is evaluated:

1. The arguments are evaluated.
2. The function’s parameters are bound to the values of the arguments.

24

3. Control is passed to the first instruction in the function’s body.
4. Control returns at the first RETURN statement reached, with the statement’s argument being the function’s

return value.
5. The result is the function’s return value.

3.3.4 Operations

3.3.4.1 Derived Types

3.3.4.1.1 Pointer Types

Let p be an expression of pointer type, and e an expression whose allocation is not of temporary lifetime.

When @p is evaluated, the result is the value in the allocation whose address is p.

When .e is evaluated, the result is the address of the allocation of e.

3.3.4.1.2 Array Types

Let a be an expression of type type[], and e an expression of type nmax.

When #a is evaluated, the result is the number of allocations assigned to a at the moment of evaluation.

When a + e is evaluated:

• if e is less than #a:
1. a temporary a1 of type { p: @type ; n: nmax } has p initialized to the address of the first allocation of

a;
2. a temporary a2 of a1’s type has n initialized to a1.n + e*#::type;
3. the result is a2.p;

• otherwise, the behavior is undefined.

When a[e] is evaluated:

• if e is less than #a, the result is @(a + e);
• otherwise, the behavior is undefined.

3.3.4.1.3 Signature Types

Let f be an expression of type return_type(argument_type).

When f(args) is evaluated, the result of the expression is the return value of the function call.

3.3.4.2 Basic Types

3.3.4.2.1 Aggregate Types

Let e be an expression of aggregate type, f an expression of pointer to aggregate type, and i a name.

When e.i is evaluated, the result is the value of the member of e named i.

25

When f@i is evaluated, the result is the value of the member of @f named i.

3.3.4.3 Fixed-Point Types
Let NMAX be the largest value in nmax, ZMAX the largest value in zmax, and ZMIN the smallest value in zmax.

Let e and f be expressions evaluating to values of fixed-point type.

3.3.4.3.1 Unary Plus

When +e is evaluated, the result is e.

3.3.4.3.2 Unary Minus

When -e is evaluated:

• if e is negative, or is positive and is less than the absolute value of ZMIN, then the result is the negative of e;
• otherwise, the behavior is undefined.

3.3.4.3.3 Unary Bitwise Complement

When ~e is evaluated, each bit in the binary representation of the result is the complement of the corresponding
bit in the binary representation of e.

3.3.4.3.4 Integer Division

When e/f is evaluated:

• if f is nonzero, then the result is the truncated quotient of e and f;
• otherwise, the behavior is undefined.

3.3.4.3.5 Remainder

When e%f is evaluated:

• if f is nonzero, then the result is the remainder of e and f;
• otherwise, the behavior is undefined.

3.3.4.3.6 Multiplication

When e*f is evaluated:

• if the product of e and f is either less than NMAX or greater than ZMIN, then it is the result of the expression;
• otherwise, the behavior is undefined.

3.3.4.3.7 Bit Shift

When e**f is evaluated:

• if the absolute value of f is smaller than the number of bits in the binary representation of the values of the
type of e, then:

26

– if e is positive, then the result is the product of e and 2f;
– otherwise, the result is translator-defined;

• otherwise, the behavior is undefined.

3.3.4.3.8 Bit Rotate

When e^^f is evaluated:

• if f is positive, the result corresponds to the cyclic permutation of the bits in the binary representation of e
by f positions to the left;

• otherwise, the result corresponds to the cyclic permutation of the bits in the binary representation of e by f
positions to the right.

3.3.4.3.9 Addition

When e + f is evaluated:

• if the sum of e and f is less than NMAX or greater than ZMIN, then it is the result;
• otherwise, the behavior is undefined.

3.3.4.3.10 Subtraction

When e - f is evaluated:

• if the difference between e and f is less than NMAX or greater than ZMIN, then it is the result;
• otherwise, the behavior is undefined.

3.3.4.3.11 Bitwise Exclusive-Or

When e # f is evaluated, each bit in the binary representation of the result is the binary ’exclusive-or’ of the
corresponding bits of the binary representations of e and f.

3.3.4.3.12 Bitwise And

When e & f is evaluated, each bit in the binary representation of the result is the binary ’and’ of the corre-
sponding bits of the binary representations of e and f.

3.3.4.3.13 Bitwise Or

When e | f is evaluated, each bit in the binary representation of the result is the binary ’or’ of the corresponding
bits of the binary representations of e and f.

3.3.4.3.14 Bitwise Nor

When e ~ f is evaluated, each bit in the binary representation of the result is the binary ’nor’ of the correspond-
ing bits of the binary representations of e and f.

3.3.4.4 Floating-Point Types
Let DMAX be the largest value in dmax, DMIN the smallest value in dmax, and DMIN_U the smallest unnormalized
value in dmax.

27

Let e and f be expressions evaluating to values of floating-point type.

3.3.4.4.1 Division

When e/f is evaluated:

• if f is nonzero, the result is the truncated quotient by long division of e and f;
• otherwise, the behavior is undefined.

3.3.4.4.2 Multiplication

When e*f is evaluated:

• if the product of e and f is less than DMAX or is greater than DMIN_U, it is the result;
• otherwise, the behavior is undefined.

3.3.4.4.3 Addition

When e + f is evaluated:

• if the sum of e and f is less than DMAX or is greater than DMIN_U, it is the result;
• otherwise, the behavior is undefined.

3.3.4.4.4 Subtraction

When e - f is evaluated:

• if the difference between e and f is less than DMAX or is greater than DMIN_U, it is the result;
• otherwise, the behavior is undefined.

3.3.4.5 Boolean Type
Let:

• x and y be expressions evaluating to boolean type,
• e and f be expressions evaluating to any enumerated type,
• u and v be expressions evaluating to any array type,
• p and q be expressions evaluating to any pointer type.

3.3.4.5.1 Equality

When e == f is evaluated, the result is true if and only if e and f have the same value.

When u == v is evaluated, the result is true if and only if:

• u and v have the same address,
• u and v have the same length, and
• u[0] and v[0] are of the same type.

When p == q is evaluated, the result is true if and only if p and q have the same value.

28

3.3.4.5.2 Inequality

When e >< f is evaluated, the result is false if and only if e and f have the same value.

When u >< v is evaluated, the result is false if and only if:

• u and v have the same address,
• u and v have the same length, and
• u[0] and v[0] are of the same type.

When p >< q is evaluated, the result is false if and only if p and q have the same value.

3.3.4.5.3 Less Than

When e < f is evaluated, the result is true if and only if e precedes f.

When p < q is evaluated:

• if p and q are addresses in the allocation of the same aggregate or array:
– the result is true if and only if p precedes q;

• otherwise, the behavior is undefined.

3.3.4.5.4 Greater Than

When e > f is evaluated, the result is true if and only if e succeeds f.

When p > q is evaluated:

• if p and q are addresses in the allocation of the same aggregate or array:
– the result is true if and only if p succeeds q;

• otherwise, the behavior is undefined.

3.3.4.5.5 Less Than or Equal

When e =< f is evaluated, the result is true if and only if e precedes or is equal to f.

When p =< q is evaluated:

• if p and q are addresses in the allocation of the same aggregate or array:
– the result is true if and only if p precedes or is equal to q;

• otherwise, the behavior is undefined.

3.3.4.5.6 Greater Than or Equal

When e >= f is evaluated, the result is true if and only if e succeeds or is equal to f.

When p >= q is evaluated:

• if p and q are addresses in the allocation of the same aggregate or array:
– the result is true if and only if p succeeds or is equal to q;

• otherwise, the behavior is undefined.

3.3.4.5.7 Logical Not

When !x is evaluated, the result is false if and only if x is true.

29

3.3.4.5.8 Logical Exclusive-Or

When x ## y is evaluated, the result is the logical exclusive-or of x and y.

3.3.4.5.9 Logical And

When x && y is evaluated:

1. x is evaluated.
If x is false, the result is false;

2. otherwise y is evaluated and is the result.

3.3.4.5.10 Logical Or

When x || y is evaluated:

1. x is evaluated.
If x is true, the result is true;

2. otherwise y is evaluated and is the result.

3.3.4.5.11 Logical Nor

When x ! y is evaluated:

1. x is evaluated.
If x is true, the result is false;

2. otherwise !y is evaluated and is the result.

3.3.4.6 Ternary Operator
Let p be an expression of boolean type, e and f expressions of compatible types.

When p?e:f is evaluated:

1. p is evaluated.
2. – If p is true, then e is evaluated and is the result;

– otherwise f is evaluated and is the result.

XXX

A Grammar

module = {declaration}
| {definition}

declaration = space name {declaration} end
| sym symbol[{, symbol}]
| type symbol[{, symbol}]

symbol = label type
type = [{prefix_type}]term_type
term_type = (name|user_type)qualifier[{postfix_type}]

| (prefix_type type)[{postfix_type}]
user_type = {(name{, name}|symbol({, symbol}|{; symbol}))}
prefix_type = @qualifier
postfix_type = (([symbol[{, symbol}]])|[[expression]])qualifier
qualifier = [!|?]

definition = type symbol[{, symbol}]
| data datum[{, datum}]
| code symbol

instructions
end

datum = (name|symbol) = expression
rename = name = identifier
instructions = {dynamic_definition|[label] statement}
dynamic_definition = sym symbol[{, symbol}]

| with rename[{, rename}]
| data datum[{, datum}]
| code symbol

instructions
end

statement = simple_statement | primitive_statement | composite_statement
simple_statement = expression_unary [(assignment|= [{expression_unary =}]) expression]
assignment = (/|%|^^|**|+|-|#|&|~||)=
primitive_statement = jump ([name])

| exit ([name])
| return ([expression])

composite_statement = if expression do
instructions

[{elif expression do
instructions}]

[else
instructions]

end
| case expression
{{is expression} do

instructions}
[else

XXXI

instructions]
end

| while expression do
instructions

end
| do

instructions
until expression end

| for [datum[{, datum}]]; expression; simple_statement do
instructions

end
expression = expression_lnor [{? expression_lnor : expression_lnor}]
expression_lnor = expression_land [{(|||!) expression_land}]
expression_land = expression_lxor [{&& expression_lxor}]
expression_lxor = expression_comp [{## expression_comp}]
expression_comp = expression_bnor [(==|><|<|>|=<|>=) expression_bnor]
expression_bnor = expression_band [{(||~) expression_band}]
expression_band = expression_bxor [{& expression_bxor}]
expression_bxor = expression_add [{# expression_add}]
expression_add = expression_mul [{(+|-) expression_mul}]
expression_mul = expression_shi [{* expression_shi}]
expression_shi = expression_div [{(**|^^) expression_div}]
expression_div = expression_term [{(/|%) expression_term}]
expression_term = [{prefix_operator}]term
prefix_operator = @|.|#|+|-|~|!
term = (identifier|(expression))[{term_operator}]

| literal
term_operator = [expression]

| ([expression[{,expression}]])
| (.|@)name

literal = number|string|array|aggregate
array = [expression[{, expression}]]
aggregate = {expression[{, expression}]}

	1 Syntax
	1.1 Language
	1.1.1 Alphabet
	1.1.2 Tokens

	1.2 Translation Units
	1.2.1 Header Units
	1.2.1.1 Namespaces
	1.2.1.2 Types
	1.2.1.3 Declarations

	1.2.2 Source Units
	1.2.2.1 Data
	1.2.2.2 Subprograms
	1.2.2.2.1 Statements
	1.2.2.2.2 Dynamic Definitions

	2 Semantics
	2.1 Types
	2.1.1 Properties
	2.1.1.1 Qualification
	2.1.1.2 Size
	2.1.1.3 Alignment

	2.1.2 Varieties
	2.1.2.1 Basic
	2.1.2.1.1 Enumerated Type
	2.1.2.1.2 Aggregate Type

	2.1.2.2 Derived
	2.1.2.2.1 Pointer
	2.1.2.2.2 Array
	2.1.2.2.3 Signature

	2.1.3 Provided
	2.1.3.1 Fixed-Point Types
	2.1.3.2 Floating-Point Types
	2.1.3.3 Boolean Type

	2.2 Data
	2.2.1 Identifier
	2.2.2 Symbols
	2.2.2.1 Global
	2.2.2.2 Unit
	2.2.2.3 Subprogram
	2.2.2.4 Block

	2.3 Code
	2.3.1 Labels
	2.3.2 Statements
	2.3.2.1 Simple Statements
	2.3.2.1.1 Assignment

	2.3.2.2 Primitive Statements
	2.3.2.2.1 JUMP Statement
	2.3.2.2.2 EXIT Statement
	2.3.2.2.3 RETURN Statement

	2.3.2.3 Composite Statements
	2.3.2.3.1 Conditional Statements
	2.3.2.3.2 FOR Statements
	2.3.2.3.3 DO Statements

	2.3.3 Definitions
	2.3.4 References

	3 Execution
	3.1 States
	3.1.1 Allocation
	3.1.1.1 Static
	3.1.1.2 Automatic
	3.1.1.3 Dynamic
	3.1.1.4 Temporary

	3.1.2 Initial
	3.1.2.1 Programs
	3.1.2.2 Libraries

	3.2 Instructions
	3.2.1 Dynamic Definitions
	3.2.1.1 Declarations
	3.2.1.2 Definitions

	3.2.2 Statements
	3.2.2.1 Simple
	3.2.2.1.1 Assignments
	3.2.2.1.2 Procedure calls

	3.2.2.2 Primitive
	3.2.2.2.1 JUMP Statement
	3.2.2.2.2 EXIT Statement
	3.2.2.2.3 RETURN Statement

	3.2.2.3 Composite
	3.2.2.3.1 Conditional Statements
	3.2.2.3.2 Iterative Statements

	3.3 Expressions
	3.3.1 Constant
	3.3.1.1 Integer
	3.3.1.2 Floating point
	3.3.1.3 Array

	3.3.2 References
	3.3.2.1 Read
	3.3.2.2 Write
	3.3.2.3 Call

	3.3.3 Function calls
	3.3.4 Operations
	3.3.4.1 Derived Types
	3.3.4.1.1 Pointer Types
	3.3.4.1.2 Array Types
	3.3.4.1.3 Signature Types

	3.3.4.2 Basic Types
	3.3.4.2.1 Aggregate Types

	3.3.4.3 Fixed-Point Types
	3.3.4.3.1 Unary Plus
	3.3.4.3.2 Unary Minus
	3.3.4.3.3 Unary Bitwise Complement
	3.3.4.3.4 Integer Division
	3.3.4.3.5 Remainder
	3.3.4.3.6 Multiplication
	3.3.4.3.7 Bit Shift
	3.3.4.3.8 Bit Rotate
	3.3.4.3.9 Addition
	3.3.4.3.10 Subtraction
	3.3.4.3.11 Bitwise Exclusive-Or
	3.3.4.3.12 Bitwise And
	3.3.4.3.13 Bitwise Or
	3.3.4.3.14 Bitwise Nor

	3.3.4.4 Floating-Point Types
	3.3.4.4.1 Division
	3.3.4.4.2 Multiplication
	3.3.4.4.3 Addition
	3.3.4.4.4 Subtraction

	3.3.4.5 Boolean Type
	3.3.4.5.1 Equality
	3.3.4.5.2 Inequality
	3.3.4.5.3 Less Than
	3.3.4.5.4 Greater Than
	3.3.4.5.5 Less Than or Equal
	3.3.4.5.6 Greater Than or Equal
	3.3.4.5.7 Logical Not
	3.3.4.5.8 Logical Exclusive-Or
	3.3.4.5.9 Logical And
	3.3.4.5.10 Logical Or
	3.3.4.5.11 Logical Nor

	3.3.4.6 Ternary Operator

	A Grammar

